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Abstract. One-flavour QCD – a gauge theory with SU(3) colour gauge group and a fermion in the funda-
mental representation – is studied by Monte Carlo simulations. The mass spectrum of the hadronic bound
states is investigated in a volume with extensions of L� 4.4r0 (� 2.2 fm) at two different lattice spacings:
a � 0.37r0 (� 0.19 fm) and a � 0.27r0 (� 0.13 fm). The lattice action is a Symanzik tree-level improved
Wilson action for the gauge field and an (unimproved) Wilson action for the fermion.

1 Introduction

QCD with one flavour of quarks is an interesting theoret-
ical laboratory to study some aspects of the strong interac-
tion dynamics, namely those not connected to spontaneous
chiral symmetry breaking and to the existence of light
pseudo-Goldstone bosons. As a consequence of a quan-
tum anomaly, the U(1) axial symmetry of the classical La-
grangian is broken and in the limit of vanishing quark mass
no massless Goldstone boson exists.
An intriguing possibility at negative quarkmasses is the

spontaneous breakdown of parity and charge conjugation
symmetry – a phenomenon first conjectured by Dashen [1]
in the three-flavour theory. This has to do with the pos-
sible negative sign of the fermion determinant at negative
quark masses, because under the assumption of the pos-
itiveness of the fermion determinant Vafa and Witten [2]
proved the impossibility of this kind of spontaneous sym-
metry breaking.
A dramatic consequence of the absence of (broken) chi-

ral symmetry is the difficulty to find a unique definition of
the point with zero quark mass in parameter space [3–5].
(For an excellent summary and discussion of this problem
see [6].)
Another line of recent theoretical developments is the

relation between one-flavour (Nf = 1) QCD and supersym-
metric Yang–Mills (SYM) theory with one supersymme-
try charge (N = 1) [7–10]. This connection is the conse-
quence of orientifold planar equivalence in the limit of large
number of colours (Nc →∞). This might imply approxi-
mate relations among hadron masses even at Nc = 3, for
instance, the approximate degeneracy of scalar and pseu-
doscalar bound states of quarks [11] reflecting the proper-
ties of the Veneziano–Yankielovicz low-energy effective ac-
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tion of N = 1 SYM [12] in the mass spectrum of Nf = 1
QCD. For instance, the ratio of the mass of the lowest pseu-
doscalarmeson to themass of the scalarmeson is predicted,
including 1/Nc corrections, to be (Nc−2)/Nc [13, 14]. An-
other prediction of orientifold equivalence is the size of the
quark condensate in one-flavour QCD, which has recently
been comparedwith numerical simulation results in [15].
In the present paper we start to explore the mass spec-

trum of hadronic states in one-flavour QCD by numerical
Monte Carlo simulations. This requires reasonably large
physical volumes at small quark masses and high statistics
– especially for determining glueball masses and contribu-
tions of disconnected quark diagrams. We apply the Wil-
son lattice fermion action, which has recently been shown
by several collaborations [16–20] to be well suited for such
an investigation. We start our exploratory studies here on
123 ·24 and 163 ·32 lattices with lattice spacing a� 0.19 fm
and a� 0.13 fm, respectively. This means that our present
setup roughly corresponds to the earlier simulations of the
qq+q Collaboration [16, 17], but we hope to continue these
investigations in the near future closer to the continuum
limit as in [18–20].
For setting the scale we use the Sommer parameter [21]

r0, which we set by definition to be r0 ≡ 0.5 fm. In other
words, whenever we speak about “1 fm” we always mean
“2r0” – having in mind that one-flavour QCD is a theory
different from QCD realised in nature.
Since the sign of the quark determinant is a sensitive

issue, we carefully determine it and take it into account
in determining the expectation values. In the present pa-
per we choose the quark mass to be sufficiently far away
from zero on the positive side, where the effect of the de-
terminant sign is not very strong. In spite of this, as we
shall see, we can investigate quite small quark masses down
to mq � 12MeV (that is mqr0 � 0.03), corresponding to
a pion massmπ � 270MeV.
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Let us mention that keeping the quarks sufficiently
heavy (choosing the hopping parameter κ in the Wilson

fermion action (2) below 18 ) the problem of negative quark
determinants can be avoided. (The thermodynamics of
Nf = 1 QCD for heavy quarks has been investigated under
this assumption in [22].) Our aim is, however, to reach
small quark masses and therefore we have to deal with the
possibly negative sign of the quark determinant.
For interpreting our results on the mass spectrum we

find it useful to embed the Nf = 1 QCD theory in a par-
tially quenched theory with more quark flavours. This em-
bedding is particularly useful if the additional quenched
valence quark flavours have the same mass as the dynam-
ical sea quark because of the exact SU(NF ) flavour sym-
metry in the combined sea- and valence-sectors (NF de-
notes here the total number of quenched and unquenched
flavours). In most cases we consider the natural choice
NF = 3, which is closest to the situation realised in na-
ture. We also work out some of the predictions of partially
quenched chiral perturbation theory (PQChPT) and com-
pare them to the numerical data.
The plan of this paper is as follows: in the next section

we define the lattice action and briefly discuss the updat-
ing algorithm. In Sect. 3 the partially quenched viewpoint
is introduced and PQChPT is considered for it. Section 4
is devoted to the presentation of our numerical simulation
data. The last section contains a discussion and summary.

2 Lattice action and simulation algorithm

2.1 Lattice action

For the SU(3) Yang–Mills gauge field we apply, follow-
ing [20], the tree-level improved Symanzik (tlSym) action,
which is a generalisation of the Wilson plaquette gauge
action. It belongs to a one-parameter family of actions
obtained by renormalisation group considerations in the
Symanzik improvement scheme [23]. Those actions also in-
clude, besides the usual (1×1)Wilson loop plaquette term,
planar rectangular (1×2) Wilson loops:

Sg = β
∑

x

(
c0

4∑

µ<ν, µ,ν=1

{
1−
1

3
ReU1×1xµν

}

+c1

4∑

µ�=ν,µ,ν=1

{
1−
1

3
ReU1×2xµν

}⎞

⎠ , (1)

with the normalisation condition c0 = 1− 8c1. For the
tlSym action we have c1 =−1/12 [24–26].
The fermionic part of the lattice action is the simple

(unimproved) Wilson action:

Sf =
∑

x

{
ψ
a

xψ
a
x−κ

4∑

µ=1

[
ψ
a

x+µ̂ Uab,xµ(1+γµ)ψ
b
x

+ψ
a

x U
†
ab,xµ(1−γµ)ψ

b
x+µ̂

]}
. (2)

Here κ is the hopping parameter related to the bare quark
mass in lattice units am0 by

1

2κ
= am0+4 . (3)

The Wilson parameter removing the fermion doublers in
the continuum limit is fixed in (2)–(3) to r = 1.

2.2 Simulation algorithm

For preparing the sequences of gauge configurations a Poly-
nomial Hybrid Monte Carlo (PHMC) updating algorithm
was used, which is well suited for theories with an odd
number of fermion species. This algorithm is based on
multi-step (actually two-step) polynomial approximations
of the inverse fermion matrix with stochastic correction in
the update chain as described in [27, 28]. The starting point
is the PHMC algorithm as introduced in [29–32]. The poly-
nomial approximation scheme and the stochastic correc-
tion in the update chain are taken over from the two-step
multi-boson algorithm of [33]. For details of the updating
algorithm and for notation related to it see [27, 28].
In order to speed up the updating, even–odd precon-

ditioning was used, which pushes the small eigenvalues of
the (squared Hermitean) fermion matrix Q[U ]2 to larger
values. The eigenvalues of Q[U ]2 are assumed to be cov-
ered on typical gauge configurations by the approximation
interval [ε, λ]. In exceptional cases some of the eigenvalues
(typically just the smallest one) are outside this interval.
In order to correct for this a correction factor C[U ] is as-
sociated with such configurations. The exact value of this
correction factor can be written as

C[U ] =

{
∏

i

[
λ
1/(2nB)
i P1(λi)P2(λi)

]}nB
. (4)

Here the product runs over the eigenvalues of Q[U ]2, the
polynomial P1(x) is an approximation for x

−1/(2nB), P2(x)
for [x1/(2nB)P1(x)]

−1. The positive integer nB defines the
determinant break-up which means that in the path inte-
gral the fermions are represented by

[(
detQ[U ]2

)1/(2nB)]nB . (5)

The part of the product in (4) where λi is inside the
interval [ε, λ] can be effectively replaced by a stochastic es-
timator and then

C[U ] =

{
∏

j

′
[
λ
1/(2nB)
j P1(λj)P2(λj)

]

×
1

N ′

N ′∑

n=1

exp

[
η†n

(
1−P ′(Q[U ]2)

)
ηn

]}nB
.

(6)

Here the
∏′
j runs over the eigenvalues outside the in-

terval [ε, λ], P ′(x) is a sufficiently good approximation
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of [x1/(2nB)P1(x)P2(x)]
−1, N ′ is the arbitrary number of

stochastic estimators and the ηn are Gaussian vectors in
the subspace orthogonal to the eigenvectors corresponding
to the eigenvalues λj . In practice, one can choose the poly-
nomial P2(x) to be such a good approximation that the
stochastic part in (6) has no noticeable effect on the expec-
tation values and therefore can completely be neglected. In
this case the correction factor is simply given by

C[U ] =

⎧
⎨

⎩
∏

j

′ [
λ
1/(2nB)
j P1(λj)P2(λj)

]
⎫
⎬

⎭

nB

. (7)

Besides the correction factor C[U ], the sign σ[U ] of the
fermion determinant detQ[U ] has also to be included in the
reweighting of the configurations and then the expectation
value of a quantity A is given by

〈A〉=

∫
d[U ]σ[U ]C[U ]A[U ]∫
d[U ]σ[U ]C[U ]

. (8)

This formula shows the dangerous sign problem, which can
arise due to the fluctuation of the determinant sign be-
cause in case of strong fluctuations of σ[U ] both nomina-
tor and denominator on the right hand side may become
small, spoiling the statistical accuracy. (Similarly, one can
also lose statistics if the correction factors C[U ] are much
smaller than 1 on many configurations.)
Typical values of the approximation interval and of the

polynomial orders at the lightest quark mass simulated
on 123 ·24 and 163 ·32 lattices, respectively, are collected
in Table 1. As in [27, 28], the orders of the polynomials Pj ,

(j = 1, 2) are denoted by nj and those of P̄j , (j = 1, 2) by n̄j ,
respectively. The simulations have been done with deter-
minant break-up nB = 2. (The polynomials P̄j are approxi-

mating (Pj)
− 12 . For more details see [27, 28] and references

therein.)
The last four columns of Table 1 show the values of the

deviation norm δ, which is minimised for a given poly-
nomial order n in the least-square approximation scheme
we are using. Generically δ is defined as

δ ≡

⎧
⎪⎨

⎪⎩

∫ λ
ε
dxw(x)

[
f(x)−Pn(x)

]2

∫ λ
ε
dxw(x)f(x)2

⎫
⎪⎬

⎪⎭

1
2

. (9)

Here f(x) is the function to be approximated and w(x) is
a positive weight function actually chosen in our case to be
w1(x) = w2(x) = x

1/(2nB) and w̄1(x) = w̄2(x) = 1, respec-
tively. The values of δ1 in Table 1 are such that the average

Table 1. Algorithmic parameters in the runs with lightest quark mass on 123 ·24 (first line) and
163 ·32 (second line) lattice, respectively. For notation see the text and also [27, 28]

ε λ n1 n̄1 n2 n̄2 δ1 δ̄1 δ2 δ̄2

3.25×10−6 2.6 350 550 1400 1600 4.9×10−4 6.7×10−7 9.9×10−7 8.8×10−7

1.20×10−5 2.4 250 370 1000 1150 5.4×10−4 8.2×10−7 4.8×10−7 3.1×10−7

acceptance rate of the stochastic correction at the end of
trajectory sequences is between 80%–90%. The other δ
values are small enough to ensure practically infinite pre-
cision of the expectation values. For more details on the
algorithmic setup in our runs see also Sect. 4.

3 Partially quenched viewpoint

Because the classical U(1)A axial symmetry is anomalous,
the single-flavour QCD theory does not have a continu-
ous chiral symmetry apart from the U(1) quark number
symmetry. Consequently it does not have spontaneous chi-
ral symmetry breaking and hence no (pseudo-) Goldstone
bosons and no easy definition of the quark mass [3–5]. In
the lattice regularisation it is, however, possible to enhance
the symmetry artificially by adding extra valence quarks,
which are quenched , that is, are not taken into account in
the Boltzmann weight of the gauge configurations by their
fermion determinants. In principle, one might consider any
number of quenched valence quarks with any mass values
but, to remain close to QCD realised in nature, the most
natural choice is to take two equal-mass valence quarks
and to call them u and d quarks. The original dynamical
quark can then be called s quark where “s” may stand for
sea or strange. The theory with dynamical s quark and
quenched u and d quarks is partially quenched . (Observe
that this partially quenching is somewhat unconventional,
since some of the valence quarks are quenched but taken
degenerate with the sea quark.)
Using this terminology, for instance, the pseudoscalar

bound state of s and s̄ can be called ηs. The corresponding
scalar state is then σs. The lowest baryon state consisting
of s quarks, which has to have spin 32 because of the Pauli

principle, can be named Ω− or e.g.∆s etc.
A theoretical description of partially quenched QCD

can be obtained through the introduction of ghost
quarks [36]. For each (quenched) valence quark a corres-
ponding bosonic ghost quark is added to the model. The
functional integral over the ghost quark fields then cancels
the fermion determinant of the valence quarks and only the
sea quark determinant remains in the measure. In our case
there are 2 flavours of valence quarks and ghost quarks,
each, with equal masses mV, and a single flavour of sea
quarks with massmS.
A particularly interesting point of the partially quen-

ched theory is the one where all the three quark masses
are equal. In this point there is an exact SU(3) vector-like
flavour symmetry in the valence plus sea quark sector, and
the hadronic bound states appear in exactly degenerate
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SU(3)-symmetric multiplets. For instance, there is a de-
generate octet of pseudoscalar mesons – the “pions” (πa,
a = 1, . . . , 8) satisfying an SU(3)-symmetric PCAC rela-
tion. With the help of the divergence of the axialvector
currentAaxµ and pseudoscalar density P

a
x one can define, as

usual, the bare PCAC quark mass amPCAC in lattice units:

amPCAC ≡
〈∂∗µA

+
xµP

−
y 〉

2〈P+x P
−
y 〉
. (10)

Here the indices + and − refer to the “charged” com-
ponents corresponding to λa± iλb (with λa,b some off-
diagonal Gell-Mann matrices) and ∂∗µ denotes the back-
ward lattice derivative. Due to the exact SU(3) symmetry,
the renormalised quark mass corresponding to mPCAC
can be defined by an SU(3)-symmetric multiplicative
renormalisation:

mRPCAC =
ZA

ZP
mPCAC . (11)

By tuning the bare quark mass on the lattice suitably,
the masses of the “pions” can be made to vanish, as the nu-
merical results indicate, and the renormalised quark mass
vanishes, too. At this point the partially quenched the-
ory has a graded SU(NF |NV)L⊗SU(NF |NV)R symmetry,
which is broken spontaneously to a “flavour” SU(NF |NV).
(Here NV is the number of additional valence quark fla-
vours and NF ≡ NV+Nf = NV+1.) In our case, with
NV = 2 flavours of valence quarks, the symmetry is thus
SU(3|2). The “pions” are the Goldstone bosons of the bro-
ken SU(3) subgroup.
Adding generic quark masses mV and mS, the sym-

metry group is explicitly broken down to SU(2|2). In the
special case mV =mS, considered here, the symmetry is
still SU(3|2), and its subgroup SU(3) is the flavour symme-
try mentioned above.
The “pions” are, of course, not physical particles in the

spectrum of Nf = 1 QCD. Nevertheless, their properties
such as masses and decay constants are well defined quanti-
ties, which can be computed on the lattice. The same is true
of thePCACquarkmassmRPCAC, which is therefore a poten-
tial candidate for a definition of a quarkmass of this theory.
The relation between the pion masses and the quark

masses can be considered in partially quenched chiral per-
turbation theory [37–39], including effects of the lattice
spacing a [40–44]. The pseudo-Goldstone fields are param-
eterized by a graded matrix,

U(x) = exp

(
i

F0
Φ(x)

)
(12)

in the supergroup SU(3|2). (Here the normalization of F0
is such that its phenomenological value is � 86MeV.) The
commuting elements of the graded matrix Φ represent the
pseudo-Goldstone bosons made from a quark and an anti-
quark with equal statistics, and the anticommuting elem-
ents of Φ represent pseudo-Goldstone fermions that are
built from one fermionic quark and one bosonic quark. The
supertrace of Φ has to vanish, which can be implemented
by a suitable choice of generators [45].

We have calculated the masses of the pseudo-Goldstone
bosons in next-to-leading order of partially quenched chiral
perturbation theory along the lines of [45], including O(a)
lattice effects [42]. The quark masses enter the expressions
in the combinations

χV = 2B0mV, χS = 2B0mS , (13)

with the usual low-energy constant B0, and the lattice
spacing occurs as

ρ= 2W0a , (14)

whereW0 is another, lattice-specific, low-energy constant.
For the pion masses we obtain

m2VV ≡m
2
π = χV+ρ+

χV+ρ

16π2F 20

[
χV−χS

+(2χV−χS+ρ) ln

(
χV+ρ

16π2F 20

)]

+
8

F 20

[
(2L8−L5)χ

2
V+(2L6−L4)χVχS

+(2W8+W6−W5−W4−L5)ρχV
+(W6−L4)ρχS] , (15)

where the usual low-energy parametersLi appear, together
with additional ones (Wi) describing lattice artifacts.
The mixed mesons, whose massesmVS we have also cal-

culated, become degenerate with the pions in the special
casemV =mS. In this case the expression reduces to

m2π = χ+ρ+
(χ+ρ)2

16π2F 20
ln

(
χ+ρ

16π2F 20

)

+
8

F 20

[
(2L8−L5+2L6−L4)χ

2

+(2W8+2W6−W5−W4−L5−L4)χρ
]
. (16)

To leading order the PCAC quark mass obeys 2B0
mRPCAC = χ+ρ, and we recognize the Gell-Mann–Oakes–
Renner relation

m2π = 2B0m
R
PCAC+NLO . (17)

Including terms in next-to-leading (NLO) order, we can ex-
pressm2π in terms ofm

R
PCAC as

m2π = χPCAC+
χ2PCAC
16π2F 20

ln
χPCAC

Λ2

+
8

F 20

[
(2L8−L5+2L6−L4)χ

2
PCAC

+(W8+W6−W5−W4
−2L8+L5−2L6+L4)χPCACρ] , (18)

where we define

χPCAC = 2B0m
R
PCAC . (19)

As a remark, in the case mV =mS the masses can al-
ternatively be obtained from the partially quenched theory
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with symmetry SU(2|1) by considering mixed pions made
from a valence quark and a degenerate sea quark. Indeed,
calculating the masses in this model reproduces (16).
The ηs can be included in the analysis by relaxing the

constraint of a vanishing supertrace [37, 45], and associat-
ing it with the field

Φ0(x) = sTrΦ(x). (20)

The effective Lagrangian then contains additional terms
depending on Φ0:

∆L= α∂µΦ0∂µΦ0+m
2
ΦΦ
2
0+O

(
Φ30

)
, (21)

where α and mΦ are free parameters in this context. We
content ourselves with displaying only the leading-order
expression for the mass of the ηs, which reads

m2ηs =
m2Φ+χPCAC
1+α

. (22)

Our numerical results formηs allow us to determine α and
mΦ.

4 Numerical simulations

After some preparatory search in the parameter space we
concentrated our runs on the 123 · 24 lattice to β = 3.8
and those on 163 · 32 to β = 4.0. The parameter values,
the number of analysed configurations, the average pla-
quette, its integrated autocorrelation and the value of the
Sommer scale parameter in lattice units r0/a are sum-
marised in Table 2. As one can see, taking the values of
r0/a at the highest κ (smallest quark masses), the exten-
sions of the 123 and 163 lattices are L= 4.46 r0 = 2.23 fm
and L = 4.29 r0 = 2.14 fm, respectively. Since we fix r0 =
0.5 fm by definition, these correspond to lattice spacings
a= 0.186 fm and a= 0.134 fm, respectively.
In the update chain by the PHMC algorithm with

stochastic correction [27, 28] a sequence of PHMC trajec-
tories is followed by a Metropolis accept–reject step with
a higher precision polynomial. The total length of the tra-
jectory sequence in the runs in Table 2 was between 1.5 and

Table 2. Summary of the runs: 123 ·24 and 163 ·32 lattices
have lowercase and uppercase labels, respectively. The number
of gauge configurations, which were saved after every trajectory
sequence, is Nconf. The average plaquette value, its autocorre-
lation in number of trajectory sequences τplaq and the value of
r0/a are also given

label β κ Nconf plaquette τplaq r0/a

a 3.80 0.1700 5424 0.546041(66) 12.5 2.66(4)
b 3.80 0.1705 3403 0.546881(46) 4.6 2.67(5)
c 3.80 0.1710 2884 0.547840(67) 7.6 2.69(5)

A 4.00 0.1600 1201 0.581427(36) 4.3 3.56(5)
B 4.00 0.1610 1035 0.582273(36) 4.1 3.61(5)
C 4.00 0.1615 1005 0.582781(32) 3.3 3.73(5)

1.8. The sequences consisted out of 3–6 individual trajecto-
ries. The precision of the first step of polynomial approxi-
mations was tuned such that the acceptance of the PHMC
trajectories was about 0.80–0.85. The total length of the
trajectory sequence was chosen such that the acceptance
of the Metropolis test was again 0.80–0.85. This ensured
a relatively high total acceptance of 0.64–0.72. During the
runs we tried to optimise the parameters of PHMC. The
different values of the integrated autocorrelation times for
the average plaquette in Table 2 are, in fact, mainly due to
increasingly better optimisations and not so much to the
dependence on the run parameters.
The second step approximations were more than good

enough to ensure that the expectation values were com-
pletely unaffected by the remaining small imprecision.
(See, for instance, the small relative deviations in Table 1.)
This has also been explicitly checked by performing a final
stochastic correction on a large sample of configurations
with polynomials P ′ of order 2500 in the stochastic part of
the right hand side of (6).
For the calculation of the expectation values the re-

weighting procedure according to (8) has to be carried out.
For this, besides the correction factor C[U ] from (7), also
the sign of the fermion determinant σ[U ] is needed. This
we calculated by the spectral flow method [34]. For the κ-
dependent computation of the low-lying eigenvalues of the
hermitean fermion matrixQ[U ] we followed [35].
It turned out that the effect of the correction factors

σ[U ]C[U ] is in most cases negligible. For instance, in run
b of Table 2 the average value of σ[U ]C[U ] in the denom-
inator is 0.9982. In run c it is 0.9842. In run b there are
34 configurations out of 3403, where some eigenvalue is
outside the approximation interval [ε, λ] and out of them
there is a single one with negative fermion determinant.
In run c there are 167 from 2884 outside [ε, λ] and out
of them there are 26 with negative correction factor due
to σ =−1.
Since the sign of the fermion determinant was not deter-

mined on every configuration, the question arises wheth-
er perhaps some negative signs were missed. This is very
improbable, because we determined the sign also on the
neighbouring configurations in addition to those with small
eigenvalues and out of the remaining configurations we
have chosen 100 randomly for sign determination. None of
these additional configurations turned out to have a nega-
tive determinant.
In the average plaquette and r0/a the effect of the cor-

rection factors is completely negligible. For instance, in
runs b and c the correction has an effect in the average value
of r0/a only in the fifth digit – whereas the statistical error
is in the third digit. In all other runs besides b and c every
eigenvalue is inside the approximation interval [ε, λ] and
therefore, according to (7), the correction factor is equal to
1 on every configuration.

4.1 Results for hadron masses

Starting with the mesonic states, we consider the sim-
plest interpolating operators in the pseudoscalar and scalar
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sectors:

0+ : P (x) = ψ̄(x)γ5ψ(x) , (23)

0− : S(x) = ψ̄(x)ψ(x) . (24)

We denote by ηs and σs the corresponding hadron states
at the lowest end of the energy spectrum (the usual nota-
tion JP is used for the respective quantum numbers). The
corresponding states in the QCD spectrum with the same
quantum numbers are η′(958) and f0(600) (or σ). (Note,
however, that the states in QCD are linear combinations
of ūu, d̄d and s̄s components – in contrast to the states in
Nf = 1 QCD which are built out of a single quark flavour.)
In the case of the pseudoscalar mesons, invariance

under the flavour group plays a special role when compar-
ing with QCD states because of the U(1) axial anomaly.
(This is not the case for baryons; see the following.)
Analogously to flavour singlet mesons in QCD, the cor-

relators of the above interpolating operators contain dis-
connected diagrams. These were computed by applying
stochastic estimator techniques (SET), and in particular
the variant of [46] with Z2 noise and spin dilution. The
method was already applied to the case of SYM [47] (as
mentioned in the introduction, SYM shares many similar-
ities with Nf = 1 QCD). In order to optimise the com-
putational load, taking also autocorrelations into account,
every fifth configuration was typically analysed, with 20
stochastic estimates each.
Spin 0 states can also be build by purely gluonic op-

erators. These are well known objects of investigation in
lattice QCD were they should describe the glueballs. Due
to the expected signal–noise ratio of their purely gluonic
correlation they belong to the most notorious particles to
measure. In particular the 0++ glueball has the same quan-
tum numbers as the σs meson. As a consequence, these two
states can also mix with each other but in this first inves-
tigation we neglect the mixing and consider only diagonal
correlators for both states.
We used the single spatial plaquette to obtain the mass

of the 0++ ground state. To increase the overlap of the
operator with this state we used APE smearing and also
performed variational methods to obtain optimal glueball
operators from linear combinations of the basic operators.
We now come to the baryon sector. The simplest bary-

onic interpolating field which can be built out of one quark
flavour is

∆i(x) = εabc
[
ψa(x)

TCγiψb(x)
]
ψc(x) . (25)

The above operator also contains a spin 1/2 component,
implying that the spin 3/2 component, on which we focus,
must be projected out from the spinorial correlator,

Gji(t) =
∑

x

〈
∆j(x, t)∆̄i(0)

〉
. (26)

We follow [48] and consider the spin-projected correlator

G3/2(t) =
1

6
Tr [Gji(t)γjγi+Gii(t)] . (27)

The low-lying hadron state contributing to the above cor-
relator is expected to have positive parity (32

+
). This cor-

responds to the∆(1232)++ of QCD if our dynamical fermi-
on is interpreted as an u quark. If the dynamical fermion is
taken to be the s quark then this would be the Ω− baryon.
(However, spin and parity of the corresponding particle
have not yet been measured, so the identification of this
state with the Ω− baryon is still uncertain [49].) In corres-
pondence to ηs and σs, in what follows we call this state
∆s. (Here one can interpret the index s as referring to the
“sea” quark.)
It should be noted at this point that the above QCD

states are not flavour singlets in Nf = 3 QCD (and in the
one flavour partially quenched theory). We recall here that
interpolating fields corresponding to flavour singlet baryon
states cannot be build in QCD if only quark fields are con-
sidered as ingredients.
The results of the hadronmasses are reported in Table 3

and, as a function of the bare PCAC quark mass mPCAC,
in Fig. 1. In the figure the masses are multiplied by the
Sommer scale parameter r0; therefore, one can put the re-
sults for both lattice spacings in a single plot and check
their scaling. (The expected small change of the multiplica-

Table 3. Results for light hadron masses in Nf = 1 QCD

run amηs amσs am0++ am∆s

a 0.462(13) 0.660(39) 0.777(11) 1.215(20)
b 0.403(11) 0.629(29) 0.685(10) 1.116(38)
c 0.398(28) 0.584(55) 0.842(16) 1.204(57)

A 0.455(17) 0.607(57) 1.083(79) 1.006(15)
B 0.380(18) 0.554(52) 1.032(66) 0.960(15)
C 0.316(22) 0.613(67) 0.980(97) 0.876(26)

Fig. 1. The mass of the lightest physical particles in one-
flavour QCD as a function of the PCAC quark mass. The
masses are multiplied by the scale parameter r0 in order to ob-
tain dimensionless quantities
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tive renormalisation factor ofmPCAC between β = 3.8 and
β = 4.0 is neglected here.)
Only in the case of run c the measurement correction

has a sizeable effect on the mass estimates. In this case con-
figurations with negative determinant where singled out:
the sign of the determinant has the effect of pushing the
masses up by 7%–10%.
The errors on the glueball mass are rather large – es-

pecially on the 163 ·32 lattice at β = 4.0 – therefore, they
are not shown in the figure. Obviously, our statistics is
not sufficient for this purpose. In general a larger number
of configurations would improve the determinations in the
glueball sector. Since the computational load is in this case
negligible, for future runs we plan a more frequent storage
of the gauge configuration.

4.1.1 Valence analysis

The connected contribution to the meson correlators can
be interpreted as a non-singlet meson made up of valence
quarks in the partially quenched picture; see Sect. 3. The
pseudoscalar channel corresponds in particular to the “va-
lence” pion. Since the computation of the connected dia-
grams is less demanding, we could afford the analysis of the
complete set of configurations.
In the baryon sector, one can define a “valence” nu-

cleon, with the usual projector operator

N(x) = εabc[ψa(x)
TCψ′b(x)]ψc(x) , (28)

where ψ′ can be interpreted as the field of the valence
quark.
The results concerning valence hadron masses are re-

ported in Table 4 and Fig. 2. In addition, the bare PCAC
quark mass according to the definition in (10) and the bare
pion decay constant in lattice units afπ are also included.

fπ and its renormalised counterpart f
R
π are defined as

afπ = (amπ)
−1〈0|A+x=0,µ=0|π

−(p= 0)〉 ,

fRπ = ZAfπ , (29)

whereA+xµ is theaxialvector currentas in (10)andπ
−(p= 0)

is a pion state with zero momentum. (The normalisation of

fπ is such that in nature we have f
R
π � 130MeV.) The value

of afπ on the lattice is obtained by the method described
in [50]. In Fig. 2 the masses are multiplied by the scale pa-

Table 4. The PCAC quark mass mPCAC, the pion mass mπ
and decay constant fπ , and the nucleon mass mN in lattice
units

run amPCAC amπ afπ amN

a 0.02771(45) 0.3908(24) 0.1838(11) 1.0439(54)
b 0.01951(39) 0.3292(25) 0.1730(15) 0.956(27)
c 0.0108(12) 0.253(10) 0.156(10) 1.011(51)

A 0.04290(36) 0.4132(21) 0.1449(9) 0.9018(44)
B 0.02561(31) 0.3199(22) 0.1289(10) 0.7978(53)
C 0.01700(30) 0.2635(24) 0.1188(12) 0.734(10)

Fig. 2. The mass of the valence pion and nucleon as a function
of the bare PCAC quark mass

rameter r0 in order to obtain dimensionless variables.

4.1.2 Chiral perturbation theory fits

The properties of the valence pion (pion mass mπ and de-
cay constant fRπ ) can be analysed in partially quenched

ChPT. We fit a2m2π and afπ simultaneously as a func-
tion of amPCAC including the data at both values of β.
There are not enough data to account for the lattice
artifacts. Therefore the fit is done with the continuum
formulae

m2π = χPCAC+
χ2PCAC
16π2F 20

ln
χPCAC

Λ23
,

fRπ

F0
√
2
= 1−

χPCAC

32π2F 20
ln
χPCAC

Λ24
, (30)

with the low-energy constants

Λ3 = 4πF0 exp{64π
2(L4+L5−2L6−2L8)} ,

Λ4 = 4πF0 exp{64π
2(L4+L5)} . (31)

The changes of the renormalisation constants ZA and ZP
between the two β values are neglected. The results are
displayed in Figs. 3 and 4.
Owing to the fact that the number of degrees of free-

dom in the fit is small, the uncertainty of the fit parameters
is relatively large. The determination of the universal low-
energy scalesΛ3/F0 andΛ4/F0 can be improved by consid-
ering the ratios [16, 17, 55]

m2π
m2π,ref

,
fπ

fπ,ref
, (32)

in which some of the coefficients cancel. We consider the
data on the larger lattice at β = 4.0 and take the quantities
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Fig. 3. Pion masses squared in lattice units and the results of
the PQChPT fit

Fig. 4. Pion decay constants in lattice units and the results of
the PQChPT fit

at κ= 0.1615 as reference. The fit yields

Λ3

F0
= 10.0±2.6 , (33)

Λ4

F0
= 31.5±14.3 , (34)

which is compatible with the phenomenological values
from ordinary QCD [51, 52].
In order to estimate the parameters α and mΦ, related

to the mass of the ηs (see Sect. 3), we made a fit ofm
2
π and

m2ηs at β = 4.0 in leading-order ChPT. The result is

α=−0.03(19) , amΦ = 0.18(8) , (35)

indicating the vanishing of α. Fixing α= 0 in the fit yields

amΦ = 0.19(2) or r0mΦ = 0.72(10) , (36)

where the value of r0/a extrapolated to vanishing PCAC
quark mass is used.
This constant, whose value in physical units is mΦ =

284(40)MeV, can be related to the quenched topological
susceptibility χt through the Witten–Veneziano
formula [53, 54]

m2Φ =
4Nf
(fRπ )

2
χt , (37)

which is valid in leading order of the 1/Nc expansion. With

χt = (193±9MeV)4 [56] and our value for fRπ we would ob-
tainmΦ = 426MeV.

5 Discussion

This first Monte Carlo investigation of the hadron masses
in QCD with Nf = 1 dynamical quark flavour reveals the
qualitative features of the low-lying particle spectrum in
this theory. The spatial extensions of our 123 ·24 and 163 ·
32 lattices are aboutL� 2.2 fm (see Table 2).1 This implies
lattice spacings a� 0.19 fm and a � 0.13 fm, respectively.
The (bare) quark masses are reasonably small – in a range
10–30MeV and 25–60MeV on the 123 ·24 and 163 ·32 lat-
tice, respectively. The updating algorithm we use (PHMC
with stochastic correction [27, 28]) works fine in this range,
making the extension of the Monte Carlo investigations to-
wards larger volumes, smaller quark masses and smaller
lattice spacings straightforward. In the present runs the
fluctuation of the eigenvalues of the fermion matrix to-
wards exceptionally small (or negative) values can be easily
handled by reweighting the configurations during the eval-
uation of the expectation values. In fact, except for the run
with the smallest quark mass on the 123 ·24 lattice where
the reweighting has a small effect, the reweighting is com-
pletely negligible or even unnecessary.
The lightest hadron is the pseudoscalar meson bound

state of a quark and an antiquark – the ηs meson
(see Table 3 and Fig. 1). The corresponding scalar bound
state – the σs meson – is in our points by about a fac-
tor 1.5 heavier. Compared to the estimate in [13, 14]
mσs/mηs �Nc/(Nc−2) = 3 this result is too low, but the
situation could be better in the zero quark mass limit that
the prediction of [13, 14] applies to. The lightest baryon –
the∆s baryon – is by a factor of about 3 heavier than the ηs
meson. The lightest glueball lies between the σs meson and
the ∆s baryon, but its mass could not be properly meas-
ured on the 163 ·32 lattice with our statistics. In general,
the mass measurements have relatively large errors – be-
tween 3%–10% – and no infinite volume and continuum
limit extrapolations could be performed with our present
data. We hope to return to these questions and to give
more precise results in future publications.
An interesting aspect of Nf = 1 QCD is the possibility

of a partially quenched extension with valence quarks. In

1 In order to have some relation to the scales in real QCD, we
set the Sommer scale parameter by definition to be r0 ≡ 0.5 fm.
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particular, adding two valence quarks, the model has sim-
ilarities to QCD in nature with its three light (u, d and s)
quark flavours. A theoretically interesting special case is if
all three quarks, the dynamical one and the two valence
ones, have exactly equal masses. In this case there is an ex-
act SU(3) flavour symmetry. This can be exploited for the
introduction of a quark mass by defining it as the PCAC
quark mass in the partially quenched theory. In this ex-
tended model there exist the usual light hadron states well
known from real QCD: the pseudoscalar pseudo-Goldstone
bosons (pions etc.), the nucleon etc. The results for the
masses of the lightest states and the decay constant of
the pseudoscalar bosons are collected in Table 4 and also
shown in Fig. 2.
Since the physical volumes of the 123 and 163 lattices

are to a good approximation equal, the comparison of the
results at the two different lattice spacings gives a hint for
the magnitude of the deviations from the continuum limit.
As one can see in Figs. 1 and 2, the scaling between β = 3.8
and β = 4.0 is reasonably good – especially for the lightest
states ηs and π. However, for reliable continuum limit esti-
mates more data at several lattice spacings are required.
In the pseudoscalar sector of the partially quenched

model one can apply partially quenched chiral perturba-
tion theory for fitting the mass and the decay constant. As
Figs. 3 and 4 show, the NLO formulae give good fits but
the number of degrees of freedom in the fits is small, and
therefore the uncertainty of the fit parameters is relatively
large.
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